2. Movimiento ondulatorio. Ondas.

De Portfolio Academico

Coso 1

Coso 2

Coso 3

Coso 4

Puntos de fase y de oposicion de fase de una onda

Sea una onda armonica unidimensional y transversal, avanzando segun el sentido positivo del eje OX

"""Dibujo de una onda marcando la velocidad y la longitud de onda, con dos puntos x1 y x2 en fase"""

y(x,t) = A cos(ωt - kx - φ0) ⇒ δ = fase de onda

Se dice que dos puntos x1 y x2 estan en fase, es decir, tienen el mismo estado de vibracion, si la diferencia de fase entre ellos es un numero par de veces π.

x1, x2 ⇒ fase ⇒ nº par veces π
En fase: Δδ = 2nπ, n∈Z

En el instante t: δ1 = ωt - kx1 - φ0 y δ2 = ωt - kx2 - φ0

Δδ = δ21 = (ωt - kx2 - φ0)-(ωt - kx1 - φ0) = kx1-x2 = k(x1-x2) = 2nπ, n∈Z

Δδ = = k(x1-x2) = 2nπ ⇒[k=2π/λ]⇒ 2π/λ(x1-x2) = 2nπ ⇒ |x1-x2| = nλ, n∈Z

Se dice que dos puntos x1 y x2 estan en oposicion de fase si la diferencia de fase entre ellos es un numero impar de veces π.

"""Dibujo de una onda con dos puntos x1 y x2 en oposicion de fase"""

Δδ = (2n+1)π, n∈Z

Δδ = δ21 = (ωt - kx2 - φ0)-(ωt - kx1 - φ0) ⇒ Δδ = k(x1-x2) = (2n+1)π ⇒[k=2π/λ][1]⇒ 2π/λ(x1-x2) = (2n+1)π ⇒ |x1-x2| = (2n+1) λ/2, n∈Z

Todos los demas puntos de x1 y x2 que no verifican las condiciones anteriores se dice que estan en desfase.















Aclaraciones

  1. Anotacion del cambio aplicado

Propiedades basicas de una onda transversal unidireccional

La ecuacion de una onda armonica es doblemente periodica.

Periodica respecto del tiempo t

y(x,t) = y(x,t+nT), n∈Z

Demostracion:

y(x,t) = A cos(ωt - kx) y(x,t+nT) = A cos[ω(t+nT) - kx]

y(x,t+nT) = A cos[ω(t+nT) - kx] = A cos(ωt + ωnT - kx) =[