Diferencia entre revisiones de «Uso de LaTeX en esta wiki»
(Created page with "FORK DESDE MEDIAWIKI, PRELIMINAR {H:h|editor toc}} {{other languages/Help:Displaying a formula}} MediaWiki uses a subset of '''{{TeX}} markup''', ...") |
|||
(No se muestran 2 ediciones intermedias del mismo usuario) | |||
Línea 162: | Línea 162: | ||
In some cases it may be the best choice to use neither {{TeX}} nor the html-substitutes, but instead the simple ASCII symbols of a standard keyboard (see below, for an example). | In some cases it may be the best choice to use neither {{TeX}} nor the html-substitutes, but instead the simple ASCII symbols of a standard keyboard (see below, for an example). | ||
== | == Funciones, simbolos y caracteres especiales == | ||
<!-- Eight symbols per line seems to be optimal--> | <!-- Eight symbols per line seems to be optimal--> | ||
=== | === Acentos y diacriticos === | ||
{| class="wikitable" | {| class="wikitable" | ||
Línea 175: | Línea 175: | ||
|} | |} | ||
=== | === Funciones comunes === | ||
{| class="wikitable" | {| class="wikitable" | ||
|<code>\sin a \cos b \tan c</code> | |<code>\sin a \cos b \tan c</code> | ||
Línea 281: | Línea 281: | ||
|} | |} | ||
=== | === Geometrica === | ||
{| class="wikitable" | {| class="wikitable" | ||
Línea 1405: | Línea 1405: | ||
</center> | </center> | ||
== | == Enlaces externos == | ||
* [https://meta.wikimedia.org/wiki/Help:Displaying_a_formula Manual de Meta-Wiki (en ingles)] | |||
* [http://es.wikipedia.org/wiki/Ayuda:Usando_TeX Manual de Wikipedia en español] | |||
*[ | |||
*[http:// | |||
Revisión actual del 13:01 20 may 2013
FORK DESDE MEDIAWIKI, PRELIMINAR
{H:h|editor toc}} Plantilla:Other languages/Help:Displaying a formula
MediaWiki uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on user preferences and the complexity of the expression.
More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details.
To have math rendered, you have to set $wgUseTeX = true;
in LocalSettings.php.
Technicals
Syntax
Traditionally, math markup goes inside the XML-style tag math: <math> ... </math>
. The old edit toolbar has the button for this, and it is possible to customize the WikiEditor toolbar to add a similar button. The icons are like these: MediaWiki:Math tip and Archivo:Button equation he.png.
However, one can also use parser function #tag: {{#tag:math|...}}
; this is more versatile: the wikitext at the dots is first expanded before interpreting the result as TeX code. Thus it can contain parameters, variables, parser functions and templates. Note however that with this syntax double braces in the TeX code must have a space in between, to avoid confusion with their use in template calls etc. Also, to produce the character "|" inside the TeX code, use {{!}}.[1]
In TeX, as in HTML, extra spaces and newlines are ignored.
Rendering
By default, the PNG images are black on white (not transparent), but since bug 8 was fixed (see rev:59550) these colors can be customized for each formula. The colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem (see bug 32694). The css selector of the images is img.tex
.
The alt text of the PNG images, which is displayed to visually impaired and other readers who cannot see the images, and is also used when the text is selected and copied, defaults to the wikitext that produced the image, excluding the <math>
and </math>
. You can override this by explicitly specifying an alt
attribute for the math
element. For example, <math alt="Square root of pi">\sqrt{\pi}</math>
generates an image [math]\displaystyle{ \sqrt{\pi} }[/math] whose alt text is "Square root of pi".
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \text
, \mbox
, or \mathrm
. You can also define new function names using \operatorname{...}
. For example, <math>\text{abc}</math>
gives [math]\displaystyle{ \text{abc} }[/math]. This does not work for special characters, they are ignored unless the whole <math> expression is rendered in HTML:
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçčďèéěêëìíîïňñòóôõöřšť÷øùúůûüýÿž}</math>
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçčďèéěêëìíîïňñòóôõöřšť÷øùúůûüýÿž}\,</math>
gives:
- [math]\displaystyle{ \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçčďèéěêëìíîïňñòóôõöřšť÷øùúůûüýÿž} }[/math]
- [math]\displaystyle{ \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçčďèéěêëìíîïňñòóôõöřšť÷øùúůûüýÿž}\, }[/math]
See bug 798 for details.
Nevertheless, using \mbox
instead of \text
, more characters are allowed
For example,
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçčďèéěêëìíîïňñòóôõöřšť÷øùúůûüýÿž}</math>
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçčèéêëìíîïñòóôõö÷øùúûüýÿ}\,</math>
gives:
- [math]\displaystyle{ \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçčďèéěêëìíîïňñòóôõöřšť÷øùúůûüýÿž} }[/math]
- [math]\displaystyle{ \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçčďèéěêëìíîïňñòóôõöřšť÷øùúůûüýÿž}\, }[/math]
But \mbox{ð}
and \mbox{þ}
will give an error:
- [math]\displaystyle{ \mbox {ð} }[/math]
- [math]\displaystyle{ \mbox {þ} }[/math]
Using \text{}
- [math]\displaystyle{ \text {ð} }[/math]
- [math]\displaystyle{ \text {þ} }[/math]
Special characters
The following symbols are reserved characters that either have a special meaning under LaTeX or are unavailable in all the fonts.
# $ % ^ & _ { } ~ \
Some of these can be entered with a backslash in front:
<math>\# \$ \% \_ \{ \}</math>
gives [math]\displaystyle{ \# \$ \% \_ \{ \} }[/math]
TeX and HTML
Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see Help:Special characters).
TeX Syntax (forcing PNG) | TeX Rendering | HTML Syntax | HTML Rendering |
---|---|---|---|
<math>\alpha</math>
|
[math]\displaystyle{ \alpha }[/math] | {{math|<VAR>α</VAR>}}
|
Plantilla:Math |
<math> f(x) = x^2\,</math>
|
[math]\displaystyle{ f(x) = x^2\, }[/math] | {{math|''f''(<var>x</var>) {{=}} <var>x</var><sup>2</sup>}}
|
Plantilla:Math |
<math>\sqrt{2}</math>
|
[math]\displaystyle{ \sqrt{2} }[/math] | {{math|{{radical|2}}}}
|
Plantilla:Math |
<math>\sqrt{1-e^2}</math>
|
[math]\displaystyle{ \sqrt{1-e^2} }[/math] | {{math|{{radical|1 − ''e''²}}}}
|
Plantilla:Math |
The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’.
Syntax | Rendering |
---|---|
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
∫ ∑ ∏ √ − ± &infty; ≈ ∝ {{=}} ≡ ≠ ≤ ≥ × · ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
∫ ∑ ∏ √ − ± ∞ ≈ ∝ = ≡ ≠ ≤ ≥ × · ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
The project has settled on both HTML and TeX because each has advantages in some situations.
Pros of HTML
- Formulas in HTML behave more like regular text. In-line HTML formulae always align properly with the rest of the HTML text and, to some degree, can be cut-and-pasted (this is not a problem if TeX is rendered using MathJax, and the alignment should not be a problem for PNG rendering once bug 32694 is fixed).
- The formula’s background and font size match the rest of HTML contents (this can be fixed on TeX formulas by using the commands
\pagecolor
and\definecolor
) and the appearance respects CSS and browser settings while the typeface is conveniently altered to help you identify formulae. - Pages using HTML code for formulae will load faster and they will create less clutter on your hard disk.
- Formulae typeset with HTML code will be accessible to client-side script links (a.k.a. scriptlets).
- The display of a formula entered using mathematical templates can be conveniently altered by modifying the templates involved; this modification will affect all relevant formulae without any manual intervention.
- The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g.
{{math|''i''}}
for the imaginary unit and{{math|<var>i</var>}}
for an arbitrary index variable.
Pros of TeX
- TeX is semantically more precise than HTML.
- In TeX, "
<math>x</math>
" means "mathematical variable [math]\displaystyle{ x }[/math]", whereas in HTML "x
" is generic and somewhat ambiguous. - On the other hand, if you encode the same formula as "
{{math|<var>x</var>}}
", you get the same visual result Plantilla:Math and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it. However, since there are far more readers than editors, this effort is worth considering if no other rendering options are available (such as MathJax, which was requested on bug 31406 for use on Wikimedia wikis and is being implemented on Extension:Math as a new rendering option).
- In TeX, "
- One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa.Plantilla:Ref This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It is true that the current situation is not ideal, but that is not a good reason to drop information/contents. It is more a reason to help improve the situation.
- Another consequence of point 1 is that TeX can be converted to MathML (e.g. by MathJax) for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device.
- TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in TeX.
- TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page.
- Once a formula is done correctly in TeX, it will render reliably, whereas the success of HTML formulae is somewhat dependent on browsers or versions of browsers. Another aspect of this dependency is fonts: the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs (compare ‘ Plantilla:IPA ’ and ‘ a̅ ’).
- When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser.Plantilla:Ref
- TeX formulae, by default, render larger and are usually more readable than HTML formulae and are not dependent on client-side browser resources, such as fonts, and so the results are more reliably WYSIWYG.
- While TeX does not assist you in finding HTML codes or Unicode values (which you can obtain by viewing the HTML source in your browser), cutting and pasting from a TeX PNG in Wikipedia into simple text will return the LaTeX source.
- Plantilla:Note unless your wikitext follows the style of point 1.2
- Plantilla:Note The entity support problem is not limited to mathematical formulae though; it can be easily solved by using the corresponding characters instead of entities, as the character repertoire links do, except for cases where the corresponding glyphs are visually indiscernible (e.g. – for ‘–’ and − for ‘−’).
In some cases it may be the best choice to use neither TeX nor the html-substitutes, but instead the simple ASCII symbols of a standard keyboard (see below, for an example).
Funciones, simbolos y caracteres especiales
Acentos y diacriticos
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
[math]\displaystyle{ \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\, }[/math] |
\check{a} \bar{a} \ddot{a} \dot{a}
|
[math]\displaystyle{ \check{a} \bar{a} \ddot{a} \dot{a} }[/math] |
Funciones comunes
\sin a \cos b \tan c
|
[math]\displaystyle{ \sin a \cos b \tan c }[/math] |
\sec d \csc e \cot f
|
[math]\displaystyle{ \sec d \csc e \cot f\, }[/math] |
\arcsin h \arccos i \arctan j
|
[math]\displaystyle{ \arcsin h \arccos i \arctan j\, }[/math] |
\sinh k \cosh l \tanh m \coth n
|
[math]\displaystyle{ \sinh k \cosh l \tanh m \coth n }[/math] |
\operatorname{sh}o\,\operatorname{ch}p\,\operatorname{th}q
|
[math]\displaystyle{ \operatorname{sh}o\,\operatorname{ch}p\,\operatorname{th}q }[/math] |
\operatorname{arsinh}r\,\operatorname{arcosh}s\,\operatorname{artanh}t
|
[math]\displaystyle{ \operatorname{arsinh}r\,\operatorname{arcosh}s\,\operatorname{artanh}t }[/math] |
\lim u \limsup v \liminf w \min x \max y
|
[math]\displaystyle{ \lim u \limsup v \liminf w \min x \max y }[/math] |
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g
|
[math]\displaystyle{ \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g }[/math] |
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
[math]\displaystyle{ \deg h \gcd i \Pr j \det k \hom l \arg m \dim n }[/math] |
Modular arithmetic
s_k \equiv 0 \pmod{m}
|
[math]\displaystyle{ s_k \equiv 0 \pmod{m}\, }[/math] |
a\,\bmod\,b
|
[math]\displaystyle{ a\,\bmod\,b\, }[/math] |
Derivatives
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
|
[math]\displaystyle{ \nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} }[/math] |
Sets
\forall \exists \empty \emptyset \varnothing
|
[math]\displaystyle{ \forall \exists \empty \emptyset \varnothing\, }[/math] |
\in \ni \not \in \notin \subset \subseteq \supset \supseteq
|
[math]\displaystyle{ \in \ni \not \in \notin \subset \subseteq \supset \supseteq\, }[/math] |
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
[math]\displaystyle{ \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\, }[/math] |
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
[math]\displaystyle{ \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\, }[/math] |
Operators
+ \oplus \bigoplus \pm \mp -
|
[math]\displaystyle{ + \oplus \bigoplus \pm \mp - \, }[/math] |
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
[math]\displaystyle{ \times \otimes \bigotimes \cdot \circ \bullet \bigodot\, }[/math] |
\star * / \div \frac{1}{2}
|
[math]\displaystyle{ \star * / \div \frac{1}{2}\, }[/math] |
Logic
\land (or \and) \wedge \bigwedge \bar{q} \to p
|
[math]\displaystyle{ \land \wedge \bigwedge \bar{q} \to p\, }[/math] |
\lor \vee \bigvee \lnot \neg q \And
|
[math]\displaystyle{ \lor \vee \bigvee \lnot \neg q \And\, }[/math] |
Root
\sqrt{2} \sqrt[n]{x}
|
[math]\displaystyle{ \sqrt{2} \sqrt[n]{x}\, }[/math] |
Relations
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
[math]\displaystyle{ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\, }[/math] |
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
[math]\displaystyle{ \le \lt \ll \gg \ge \gt \equiv \not\equiv \ne \mbox{or} \neq \propto\, }[/math] |
\geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
|
[math]\displaystyle{ \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox }[/math] |
Geometrica
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
[math]\displaystyle{ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\, }[/math] |
Arrows
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
|
[math]\displaystyle{ \leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \, }[/math] |
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow (or \implies) \Longleftrightarrow (or \iff)
|
[math]\displaystyle{ \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow }[/math] |
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
|
[math]\displaystyle{ \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow }[/math] |
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
|
[math]\displaystyle{ \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \, }[/math] |
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
[math]\displaystyle{ \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \, }[/math] |
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
[math]\displaystyle{ \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \, }[/math] |
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
|
[math]\displaystyle{ \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \, }[/math] |
Special
\And \eth \S \P \% \dagger \ddagger \ldots \cdots
|
[math]\displaystyle{ \And \eth \S \P \% \dagger \ddagger \ldots \cdots\, }[/math] |
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
[math]\displaystyle{ \smile \frown \wr \triangleleft \triangleright \infty \bot \top\, }[/math] |
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
[math]\displaystyle{ \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\, }[/math] |
\ell \mho \Finv \Re \Im \wp \complement
|
[math]\displaystyle{ \ell \mho \Finv \Re \Im \wp \complement\, }[/math] |
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
[math]\displaystyle{ \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\, }[/math] |
Unsorted (new stuff)
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
[math]\displaystyle{ \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown }[/math] |
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
[math]\displaystyle{ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge }[/math] |
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
[math]\displaystyle{ \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes }[/math] |
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
[math]\displaystyle{ \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant }[/math] |
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
[math]\displaystyle{ \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq }[/math] |
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
[math]\displaystyle{ \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft }[/math] |
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
|
[math]\displaystyle{ \Vvdash \bumpeq \Bumpeq \eqsim \gtrdot }[/math] |
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
[math]\displaystyle{ \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq }[/math] |
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork
|
[math]\displaystyle{ \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork }[/math] |
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
[math]\displaystyle{ \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq }[/math] |
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
[math]\displaystyle{ \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid }[/math] |
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
[math]\displaystyle{ \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr }[/math] |
\subsetneq
|
[math]\displaystyle{ \subsetneq }[/math] |
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
[math]\displaystyle{ \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq }[/math] |
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
[math]\displaystyle{ \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq }[/math] |
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
[math]\displaystyle{ \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq }[/math] |
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
[math]\displaystyle{ \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\, }[/math] |
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
[math]\displaystyle{ \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\, }[/math] |
\dashv \asymp \doteq \parallel
|
[math]\displaystyle{ \dashv \asymp \doteq \parallel\, }[/math] |
\ulcorner \urcorner \llcorner \lrcorner
|
[math]\displaystyle{ \ulcorner \urcorner \llcorner \lrcorner }[/math] |
\Coppa\coppa\varcoppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma
|
[math]\displaystyle{ \Coppa\coppa\varcoppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma }[/math] |
Larger expressions
Subscripts, superscripts, integrals
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
[math]\displaystyle{ a^2 }[/math] | [math]\displaystyle{ a^2 \, }[/math] |
Subscript | a_2 |
[math]\displaystyle{ a_2 }[/math] | [math]\displaystyle{ a_2 \, }[/math] |
Grouping | a^{2+2} |
[math]\displaystyle{ a^{2+2} }[/math] | [math]\displaystyle{ a^{2+2}\, }[/math] |
a_{i,j} |
[math]\displaystyle{ a_{i,j} }[/math] | [math]\displaystyle{ a_{i,j}\, }[/math] | |
Combining sub & super without and with horizontal separation | x_2^3 |
[math]\displaystyle{ x_2^3 }[/math] | [math]\displaystyle{ x_2^3 \, }[/math] |
{x_2}^3 |
[math]\displaystyle{ {x_2}^3 }[/math] | [math]\displaystyle{ {x_2}^3 \, }[/math] | |
Super super | 10^{10^{ \,\!{8} } |
[math]\displaystyle{ 10^{10^{ \,\! 8 } } }[/math] | |
Super super | 10^{10^{ \overset{8}{} }} |
[math]\displaystyle{ 10^{10^{ \overset{8}{} }} }[/math] | |
Super super (wrong in HTML in some browsers) | 10^{10^8} |
[math]\displaystyle{ 10^{10^8} }[/math] | |
Preceding and/or Additional sub & super | _nP_k |
[math]\displaystyle{ _nP_k }[/math] | [math]\displaystyle{ _nP_k \, }[/math] |
\sideset{_1^2}{_3^4}\prod_a^b |
[math]\displaystyle{ \sideset{_1^2}{_3^4}\prod_a^b }[/math] | ||
{}_1^2\!\Omega_3^4 |
[math]\displaystyle{ {}_1^2\!\Omega_3^4 }[/math] | ||
Stacking | \overset{\alpha}{\omega} |
[math]\displaystyle{ \overset{\alpha}{\omega} }[/math] | |
\underset{\alpha}{\omega} |
[math]\displaystyle{ \underset{\alpha}{\omega} }[/math] | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
[math]\displaystyle{ \overset{\alpha}{\underset{\gamma}{\omega}} }[/math] | ||
\stackrel{\alpha}{\omega} |
[math]\displaystyle{ \stackrel{\alpha}{\omega} }[/math] | ||
Derivative (forced PNG) | x', y'', f', f'' |
[math]\displaystyle{ x', y'', f', f'' }[/math] | |
Derivative (f in italics may overlap primes in HTML) | x', y'', f', f'' |
[math]\displaystyle{ x', y'', f', f'' }[/math] | [math]\displaystyle{ x', y'', f', f'' }[/math] |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
[math]\displaystyle{ x^\prime, y^{\prime\prime} }[/math] | [math]\displaystyle{ x^\prime, y^{\prime\prime}\, }[/math] |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
[math]\displaystyle{ x\prime, y\prime\prime }[/math] | [math]\displaystyle{ x\prime, y\prime\prime\, }[/math] |
Derivative dots | \dot{x}, \ddot{x} |
[math]\displaystyle{ \dot{x}, \ddot{x} }[/math] | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
[math]\displaystyle{ \hat a \ \bar b \ \vec c }[/math] | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
[math]\displaystyle{ \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} }[/math] | ||
\overline{g h i} \ \underline{j k l} |
[math]\displaystyle{ \overline{g h i} \ \underline{j k l} }[/math] | ||
\not 1 \ \cancel{123} |
[math]\displaystyle{ \not 1 \ \cancel{123} }[/math] | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
[math]\displaystyle{ A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C }[/math] | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{\text{sum}\,=\,5050} |
[math]\displaystyle{ \overbrace{ 1+2+\cdots+100 }^{\text{sum}\,=\,5050} }[/math] | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26\text{ terms}} |
[math]\displaystyle{ \underbrace{ a+b+\cdots+z }_{26\text{ terms}} }[/math] | |
Sum | \sum_{k=1}^N k^2 |
[math]\displaystyle{ \sum_{k=1}^N k^2 }[/math] | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
[math]\displaystyle{ \textstyle \sum_{k=1}^N k^2 }[/math] | |
Product | \prod_{i=1}^N x_i |
[math]\displaystyle{ \prod_{i=1}^N x_i }[/math] | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
[math]\displaystyle{ \textstyle \prod_{i=1}^N x_i }[/math] | |
Coproduct | \coprod_{i=1}^N x_i |
[math]\displaystyle{ \coprod_{i=1}^N x_i }[/math] | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
[math]\displaystyle{ \textstyle \coprod_{i=1}^N x_i }[/math] | |
Limit | \lim_{n \to \infty}x_n |
[math]\displaystyle{ \lim_{n \to \infty}x_n }[/math] | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
[math]\displaystyle{ \textstyle \lim_{n \to \infty}x_n }[/math] | |
Integral | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx |
[math]\displaystyle{ \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math] | |
Integral (alternate limits style) | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx |
[math]\displaystyle{ \int_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math] | |
Integral (force \textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x\, dx |
[math]\displaystyle{ \textstyle \int\limits_{-N}^{N} e^x\, dx }[/math] | |
Integral (force \textstyle , alternate limits style) |
\textstyle \int_{-N}^{N} e^x\, dx |
[math]\displaystyle{ \textstyle \int_{-N}^{N} e^x\, dx }[/math] | |
Double integral | \iint\limits_D \, dx\,dy |
[math]\displaystyle{ \iint\limits_D \, dx\,dy }[/math] | |
Triple integral | \iiint\limits_E \, dx\,dy\,dz |
[math]\displaystyle{ \iiint\limits_E \, dx\,dy\,dz }[/math] | |
Quadruple integral | \iiiint\limits_F \, dx\,dy\,dz\,dt |
[math]\displaystyle{ \iiiint\limits_F \, dx\,dy\,dz\,dt }[/math] | |
Line or path integral | \int_C x^3\, dx + 4y^2\, dy |
[math]\displaystyle{ \int_C x^3\, dx + 4y^2\, dy }[/math] | |
Closed line or path integral | \oint_C x^3\, dx + 4y^2\, dy |
[math]\displaystyle{ \oint_C x^3\, dx + 4y^2\, dy }[/math] | |
Intersections | \bigcap_1^n p |
[math]\displaystyle{ \bigcap_1^n p }[/math] | |
Unions | \bigcup_1^k p |
[math]\displaystyle{ \bigcup_1^k p }[/math] |
Fractions, matrices, multilines
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{1}{2}=0.5
|
[math]\displaystyle{ \frac{1}{2}=0.5 }[/math] |
Small ("text style") fractions | \tfrac{1}{2} = 0.5
|
[math]\displaystyle{ \tfrac{1}{2} = 0.5 }[/math] |
Large ("display style") fractions | \dfrac{k}{k-1} = 0.5
|
[math]\displaystyle{ \dfrac{k}{k-1} = 0.5 }[/math] |
Mixture of large and small fractions | \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n
|
[math]\displaystyle{ \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n }[/math] |
Continued fractions (note the difference in formatting) | \cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a \qquad \dfrac{2}{ c + \dfrac{2}{ d + \dfrac{1}{2} } } = a |
[math]\displaystyle{ \cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a \qquad \dfrac{2}{ c + \dfrac{2}{ d + \dfrac{1}{2} } } = a }[/math] |
Binomial coefficients | \binom{n}{k}
|
[math]\displaystyle{ \binom{n}{k} }[/math] |
Small ("text style") binomial coefficients | \tbinom{n}{k}
|
[math]\displaystyle{ \tbinom{n}{k} }[/math] |
Large ("display style") binomial coefficients | \dbinom{n}{k}
|
[math]\displaystyle{ \dbinom{n}{k} }[/math] |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
[math]\displaystyle{ \begin{matrix} x & y \\ z & v \end{matrix} }[/math] |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
[math]\displaystyle{ \begin{vmatrix} x & y \\ z & v \end{vmatrix} }[/math] | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
[math]\displaystyle{ \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} }[/math] | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
[math]\displaystyle{ \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} }[/math] | |
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
[math]\displaystyle{ \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} }[/math] | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
[math]\displaystyle{ \begin{pmatrix} x & y \\ z & v \end{pmatrix} }[/math] | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
[math]\displaystyle{ \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) }[/math] | |
Arrays | \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} |
[math]\displaystyle{ \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} }[/math] |
Cases | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
[math]\displaystyle{ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }[/math] |
System of equations | \begin{cases} 3x + 5y + z &= 1 \\ 7x - 2y + 4z &= 2 \\ -6x + 3y + 2z &= 3 \end{cases} |
[math]\displaystyle{ \begin{cases} 3x + 5y + z &= 1 \\ 7x - 2y + 4z &= 2 \\ -6x + 3y + 2z &= 3 \end{cases} }[/math] |
Breaking up a long expression so it wraps when necessary | <math>f(x) = \sum_{n=0}^\infty a_n x^n</math> <math>= a_0 + a_1x + a_2x^2 + \cdots</math> |
[math]\displaystyle{ f(x) = \sum_{n=0}^\infty a_n x^n }[/math] [math]\displaystyle{ = a_0 + a_1x + a_2x^2 + \cdots }[/math] |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
[math]\displaystyle{ \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} }[/math] |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
[math]\displaystyle{ \begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} }[/math] | |
Multiline equations with aligment specified (left, center, right) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
[math]\displaystyle{ \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math] |
\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
[math]\displaystyle{ \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math] |
Parenthesizing big expressions, brackets, bars
Feature | Syntax | How it looks rendered |
---|---|---|
Bad | ( \frac{1}{2} )
|
[math]\displaystyle{ ( \frac{1}{2} ) }[/math] |
Good | \left ( \frac{1}{2} \right )
|
[math]\displaystyle{ \left ( \frac{1}{2} \right ) }[/math] |
You can use various delimiters with \left and \right:
Feature | Syntax | How it looks rendered |
---|---|---|
Parentheses | \left ( \frac{a}{b} \right )
|
[math]\displaystyle{ \left ( \frac{a}{b} \right ) }[/math] |
Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
|
[math]\displaystyle{ \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack }[/math] |
Braces (note the backslash before the braces in the code) | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
|
[math]\displaystyle{ \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace }[/math] |
Angle brackets | \left \langle \frac{a}{b} \right \rangle
|
[math]\displaystyle{ \left \langle \frac{a}{b} \right \rangle }[/math] |
Bars and double bars (note: "bars" provide the absolute value function) | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
|
[math]\displaystyle{ \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| }[/math] |
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
|
[math]\displaystyle{ \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil }[/math] |
Slashes and backslashes | \left / \frac{a}{b} \right \backslash
|
[math]\displaystyle{ \left / \frac{a}{b} \right \backslash }[/math] |
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
|
[math]\displaystyle{ \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow }[/math] |
Delimiters can be mixed, as long as \left and \right are both used | \left [ 0,1 \right ) \left \langle \psi \right |
|
[math]\displaystyle{ \left [ 0,1 \right ) }[/math] [math]\displaystyle{ \left \langle \psi \right | }[/math] |
Use \left. or \right. if you don't want a delimiter to appear: | \left . \frac{A}{B} \right \} \to X
|
[math]\displaystyle{ \left . \frac{A}{B} \right \} \to X }[/math] |
Size of the delimiters | \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big] |
[math]\displaystyle{ \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big] }[/math] |
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
|
[math]\displaystyle{ \big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle }[/math] | |
\big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\|
|
[math]\displaystyle{ \big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\| }[/math] | |
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
|
[math]\displaystyle{ \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil }[/math] | |
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
|
[math]\displaystyle{ \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow }[/math] | |
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
|
[math]\displaystyle{ \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow }[/math] | |
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
|
[math]\displaystyle{ \big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash }[/math] |
Alphabets and typefaces
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
Greek alphabet | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
[math]\displaystyle{ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \, }[/math] |
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
[math]\displaystyle{ \Eta \Theta \Iota \Kappa \Lambda \Mu \, }[/math] |
\Nu \Xi \Omicron \Pi \Rho \Sigma \Tau
|
[math]\displaystyle{ \Nu \Xi \Omicron \Pi \Rho \Sigma \Tau\, }[/math] |
\Upsilon \Phi \Chi \Psi \Omega
|
[math]\displaystyle{ \Upsilon \Phi \Chi \Psi \Omega \, }[/math] |
\alpha \beta \gamma \delta \epsilon \zeta
|
[math]\displaystyle{ \alpha \beta \gamma \delta \epsilon \zeta \, }[/math] |
\eta \theta \iota \kappa \lambda \mu
|
[math]\displaystyle{ \eta \theta \iota \kappa \lambda \mu \, }[/math] |
\nu \xi \omicron \pi \rho \sigma \tau
|
[math]\displaystyle{ \nu \xi \pi \omicron \rho \sigma \tau \, }[/math] |
\upsilon \phi \chi \psi \omega
|
[math]\displaystyle{ \upsilon \phi \chi \psi \omega \, }[/math] |
\varepsilon \digamma \vartheta \varkappa
|
[math]\displaystyle{ \varepsilon \digamma \vartheta \varkappa \, }[/math] |
\varpi \varrho \varsigma \varphi
|
[math]\displaystyle{ \varpi \varrho \varsigma \varphi\, }[/math] |
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
[math]\displaystyle{ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \, }[/math] |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
[math]\displaystyle{ \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \, }[/math] |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
[math]\displaystyle{ \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \, }[/math] |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
[math]\displaystyle{ \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\, }[/math] |
\C \N \Q \R \Z
|
[math]\displaystyle{ \C \N \Q \R \Z }[/math] |
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
[math]\displaystyle{ \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \, }[/math] |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
[math]\displaystyle{ \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \, }[/math] |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
[math]\displaystyle{ \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \, }[/math] |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
[math]\displaystyle{ \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \, }[/math] |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
[math]\displaystyle{ \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \, }[/math] |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
[math]\displaystyle{ \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \, }[/math] |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
[math]\displaystyle{ \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \, }[/math] |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
[math]\displaystyle{ \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \, }[/math] |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
[math]\displaystyle{ \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \, }[/math] |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
[math]\displaystyle{ \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\, }[/math] |
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
[math]\displaystyle{ \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \, }[/math] |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
[math]\displaystyle{ \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\, }[/math] |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
[math]\displaystyle{ \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\, }[/math] |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
[math]\displaystyle{ \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\, }[/math] |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
[math]\displaystyle{ \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\, }[/math] |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
[math]\displaystyle{ \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\, }[/math] |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
[math]\displaystyle{ \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\, }[/math] |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
[math]\displaystyle{ \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\, }[/math] |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
[math]\displaystyle{ \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \, }[/math] |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
[math]\displaystyle{ \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\, }[/math] |
Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
[math]\displaystyle{ \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \, }[/math] |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
[math]\displaystyle{ \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \, }[/math] |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
[math]\displaystyle{ \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \, }[/math] |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
[math]\displaystyle{ \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \, }[/math] |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
[math]\displaystyle{ \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \, }[/math] |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
[math]\displaystyle{ \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \, }[/math] |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
[math]\displaystyle{ \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \, }[/math] |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
[math]\displaystyle{ \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \, }[/math] |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
[math]\displaystyle{ \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \, }[/math] |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
[math]\displaystyle{ \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\, }[/math] |
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
[math]\displaystyle{ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \, }[/math] |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
[math]\displaystyle{ \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \, }[/math] |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
[math]\displaystyle{ \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \, }[/math] |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
[math]\displaystyle{ \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \, }[/math] |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
[math]\displaystyle{ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\, }[/math] |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
[math]\displaystyle{ \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \, }[/math] |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
[math]\displaystyle{ \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \, }[/math] |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
[math]\displaystyle{ \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \, }[/math] |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
[math]\displaystyle{ \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \, }[/math] |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
[math]\displaystyle{ \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\, }[/math] |
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
[math]\displaystyle{ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \, }[/math] |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
[math]\displaystyle{ \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \, }[/math] |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
[math]\displaystyle{ \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \, }[/math] |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
[math]\displaystyle{ \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \, }[/math] |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
[math]\displaystyle{ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \, }[/math] |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
[math]\displaystyle{ \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \, }[/math] |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
[math]\displaystyle{ \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \, }[/math] |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
[math]\displaystyle{ \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \, }[/math] |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
[math]\displaystyle{ \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \, }[/math] |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
[math]\displaystyle{ \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\, }[/math] |
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
[math]\displaystyle{ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \, }[/math] |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
[math]\displaystyle{ \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \, }[/math] |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
[math]\displaystyle{ \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \, }[/math] |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
[math]\displaystyle{ \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\, }[/math] |
Hebrew | |
\aleph \beth \gimel \daleth
|
[math]\displaystyle{ \aleph \beth \gimel \daleth\, }[/math] |
Feature | Syntax | How it looks rendered | |
---|---|---|---|
non-italicised characters | \mbox{abc}
|
[math]\displaystyle{ \mbox{abc} }[/math] | [math]\displaystyle{ \mbox{abc} \, }[/math] |
mixed italics (bad) | \mbox{if} n \mbox{is even}
|
[math]\displaystyle{ \mbox{if} n \mbox{is even} }[/math] | [math]\displaystyle{ \mbox{if} n \mbox{is even} \, }[/math] |
mixed italics (good) | \mbox{if }n\mbox{ is even}
|
[math]\displaystyle{ \mbox{if }n\mbox{ is even} }[/math] | [math]\displaystyle{ \mbox{if }n\mbox{ is even} \, }[/math] |
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even}
|
[math]\displaystyle{ \mbox{if}~n\ \mbox{is even} }[/math] | [math]\displaystyle{ \mbox{if}~n\ \mbox{is even} \, }[/math] |
Color
Equations can use color:
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
- [math]\displaystyle{ {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1} }[/math]
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
- [math]\displaystyle{ x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a} }[/math]
It is also possible to change the background color (since r59550), as in the following example:
Background | Wikicode | Rendering (in PNG) |
---|---|---|
White | e^{i \pi} + 1 = 0
|
[math]\displaystyle{ e^{i \pi} + 1 = 0\, }[/math] |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
[math]\displaystyle{ \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\, }[/math] | |
Orange | e^{i \pi} + 1 = 0
|
[math]\displaystyle{ e^{i \pi} + 1 = 0\, }[/math] |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
[math]\displaystyle{ \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\, }[/math] |
See here for all named colors supported by LaTeX.
Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See en:Wikipedia:Manual of Style#Color coding.
Formatting issues
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Syntax | How it looks rendered |
---|---|---|
double quad space | a \qquad b
|
[math]\displaystyle{ a \qquad b }[/math] |
quad space | a \quad b
|
[math]\displaystyle{ a \quad b }[/math] |
text space | a\ b
|
[math]\displaystyle{ a\ b }[/math] |
text space without PNG conversion | a \mbox{ } b
|
[math]\displaystyle{ a \mbox{ } b }[/math] |
large space | a\;b
|
[math]\displaystyle{ a\;b }[/math] |
medium space | a\>b
|
[not supported] |
small space | a\,b
|
[math]\displaystyle{ a\,b }[/math] |
no space | ab
|
[math]\displaystyle{ ab\, }[/math] |
small negative space | a\!b
|
[math]\displaystyle{ a\!b }[/math] |
Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX):
<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
- [math]\displaystyle{ 0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots }[/math]
This can be remedied by putting a pair of braces { } around the whole expression:
<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
- [math]\displaystyle{ {0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots} }[/math]
Alignment with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like [math]\displaystyle{ \int_{-N}^{N} e^x\, dx }[/math] should look good.
If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Forced PNG rendering
To force the formula to render as PNG, add \,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "⧼mw math simple⧽" mode, but not for "⧼mw math html⧽" mode (math rendering settings in preferences). Notice that since MediaWiki 1.19, the only available options will be "⧼mw_math_png⧽" and "⧼mw_math_source⧽".
You can also use \,
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,
.
This could be useful to keep the rendering of formulae in a proof consistent for users who have not selected "⧼mw_math_png⧽" (e.g., all anonymous users on wikis where $wgDefaultUserOptions['math']
is not set to 0), for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
For instance:
Syntax | How it looks rendered |
---|---|
a^{c+2}
|
[math]\displaystyle{ a^{\,\!c+2} }[/math] |
a^{c+2} \,
|
[math]\displaystyle{ a^{c+2} \, }[/math] |
a^{\,\!c+2}
|
[math]\displaystyle{ a^{\,\!c+2} }[/math] |
a^{b^{c+2}}
|
[math]\displaystyle{ a^{b^{c+2}} }[/math] (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}} \,
|
[math]\displaystyle{ a^{b^{c+2}} \, }[/math] (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}}\approx 5
|
[math]\displaystyle{ a^{b^{c+2}}\approx 5 }[/math] (due to "[math]\displaystyle{ \approx }[/math]" correctly displayed, no code "\,\!" needed) |
a^{b^{\,\!c+2}}
|
[math]\displaystyle{ a^{b^{\,\!c+2}} }[/math] |
\int_{-N}^{N} e^x\, dx
|
[math]\displaystyle{ \int_{-N}^{N} e^x\, dx }[/math] |
This has been tested with most of the formulae on this page, and seems to work perfectly.
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
- <!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
Alternatively, you could create a template called "Don't remove the \,\!" to be able to use a category or Special:WhatLinksHere to track the usage of this hack.
Commutative diagrams
To make a commutative diagram, there are three steps:
- Write the diagram in TeX
- Convert to SVG
- Upload the file to Wikimedia Commons
Diagrams in TeX
Xy-pic (online manual) is the most powerful and general-purpose diagram package in TeX.
Simpler packages include:
The following is a template for Xy-pic, together with a hack to increase the margins in dvips, so that the diagram is not truncated by over-eager cropping (suggested in TUGboat TUGboat, Volume 17 1996, No. 3):
\documentclass{amsart} \usepackage[all, ps]{xy} % Loading the XY-Pic package % Using postscript driver for smoother curves \usepackage{color} % For invisible frame \begin{document} \thispagestyle{empty} % No page numbers \SelectTips{eu}{} % Euler arrowheads (tips) \setlength{\fboxsep}{0pt} % Frame box margin {\color{white}\framebox{{\color{black}$$ % Frame for margin \xymatrix{ % The diagram is a 3x3 matrix %%% Diagram goes here %%% } $$}}} % end math, end frame \end{document}
Convert to SVG
Once you have produced your diagram in LaTeX (or TeX), you can convert it to an SVG file using the following sequence of commands:
pdflatex file.tex pdfcrop --clip file.pdf tmp.pdf pdf2svg tmp.pdf file.svg (rm tmp.pdf at the end)
pdflatex and the pdfcrop and pdf2svg utilities are needed for this procedure.
If you do not have these programs, you can also use the commands
latex file.tex dvipdfm file.dvi
to get a PDF version of your diagram.
Programs
In general, you will not be able to get anywhere with diagrams without TeX and Ghostscript, and the inkscape
program is a useful tool for creating or modifying your diagrams by hand. There is also a utility pstoedit
which supports direct conversion from Postscript files to many vector graphics formats, but it requires a non-free plugin to convert to SVG, and regardless of the format, this editor has not been successful in using it to convert diagrams with diagonal arrows from TeX-created files.
These programs are:
- a working TeX distribution, such as TeX Live
- Ghostscript
- pstoedit
- Inkscape
Upload the file
Plantilla:Seealso Plantilla:Seealso
As the diagram is your own work, upload it to Wikimedia Commons, so that all projects (notably, all languages) can use it without having to copy it to their language's Wiki. (If you've previously uploaded a file to somewhere other than Commons, transwiki it to Commons.)
- Check size
- Before uploading, check that the default size of the image is neither too large nor too small by opening in an SVG application and viewing at default size (100% scaling), otherwise adjust the -y option to dvips.
- Name
- Make sure the file has a meaningful name.
- Upload
- Login to Wikimedia Commons, then upload the file; for the Summary, give a brief description.
Now go to the image page and add a description, including the source code, using this template (using {{Information}}):
{{Information |Description = {{en| Description [[:en:Link to WP page|topic]] }} |Source = {{own}}
Created as per:
[[:en:meta:Help:Displaying a formula#Commutative diagrams]]; source code below. |Date = The Creation Date, like 1999-12-31 |Author = [[User:YourUserName|Your Real Name]] |Permission = Public domain; (or other license) see below. }} == LaTeX source == <source lang="latex"> % LaTeX source here </source> == [[Commons:Copyright tags|Licensing]]: == {{self|PD-self (or other license)|author=[[User:YourUserName|Your Real Name]]}} [[Category:Descriptive categories, such as "Group theory"]] [[Category:Commutative diagrams]]
- Source code
- Include the source code in the image page, in a LaTeX source section, so that the diagram can be edited in future.
- Include the complete .tex file, not just the fragment, so future editors do not need to reconstruct a compilable file.
- License
- The most common license for commutative diagrams is PD-self; some use PD-ineligible, especially for simple diagrams, or other licenses. Please do not use the GFDL, as it requires the entire text of the GFDL to be attached to any document that uses the diagram.
- Description
- If possible, link to a Wikipedia page relevant to the diagram.
- Category
- Include [[Category:Commutative diagrams]], so that it appears in commons:Category:Commutative diagrams. There are also subcategories, which you may choose to use.
- Include image
- Now include the image on the original page via [[Image:Diagram.svg]]
Examples
A sample conforming diagram is commons:Image:PSU-PU.svg.
Examples
Quadratic Polynomial
[math]\displaystyle{ ax^2 + bx + c = 0 }[/math]
<math>ax^2 + bx + c = 0</math>
Quadratic Polynomial (Force PNG Rendering)
[math]\displaystyle{ ax^2 + bx + c = 0\, }[/math]
<math>ax^2 + bx + c = 0\,</math>
Quadratic Formula
[math]\displaystyle{ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} }[/math]
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions
[math]\displaystyle{ 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) }[/math]
<math>2 = \left(
\frac{\left(3-x\right) \times 2}{3-x}
\right)</math>
[math]\displaystyle{ S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2} }[/math]
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
Integrals
[math]\displaystyle{ \int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy }[/math]
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
= \int_a^x f(y)(x-y)\,dy</math>
Summation
[math]\displaystyle{ \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)} }[/math]
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}</math>
Differential Equation
[math]\displaystyle{ u'' + p(x)u' + q(x)u=f(x),\quad x\gt a }[/math]
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Complex numbers
[math]\displaystyle{ |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z) }[/math]
<math>|\bar{z}| = |z|,
|(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z)</math>
Limits
[math]\displaystyle{ \lim_{z\rightarrow z_0} f(z)=f(z_0) }[/math]
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
Integral Equation
[math]\displaystyle{ \phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR }[/math]
<math>\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
Example
[math]\displaystyle{ \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} }[/math]
<math>\phi_n(\kappa) =
0.033C_n^2\kappa^{-11/3},\quad
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
Continuation and cases
[math]\displaystyle{ f(x) = \begin{cases}1 & -1 \le x \lt 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases} }[/math]
<math>
f(x) =
\begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \mbox{otherwise}
\end{cases}
</math>
Prefixed subscript
[math]\displaystyle{ {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!} }[/math]
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
= \sum_{n=0}^\infty
\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
\frac{z^n}{n!}</math>
Fraction and small fraction
[math]\displaystyle{ \frac {a}{b} }[/math] [math]\displaystyle{ \tfrac {a}{b} }[/math] <math> \frac {a}{b}\ \tfrac {a}{b} </math>
Enlaces externos
- ↑ This requires the wiki to have the Template:! containing "|", as many wikis do, see e.g. also w:Template:!.